

What is PL/SQL?

PL/SQL stands for Procedural Language extensions to the Structured Query

Language (SQL). SQL is a powerful language for both querying and updating

data in relational databases.

Oracle created PL/SQL that extends some limitations of SQL to provide a

more comprehensive solution for building mission-critical applications

running on Oracle database.

Why Use PL/SQL?

An application that uses Oracle Database is worthless unless only correct
and complete data is persisted. The time-honored way to ensure this is to

expose the database only via an interface that hides the implementation
details -- the tables and the SQL statements that operate on these. This

approach is generally called the thick database paradigm, because PL/SQL
subprograms inside the database issue the SQL statements from code that

implements the surrounding business logic; and because the data can be
changed and viewed only through a PL/SQL interface.

www.a2zpapers.com

www.a2zpapers.com

PL/SQL – Overview

The PL/SQL programming language was developed by Oracle Corporation in

the late 1980s as procedural extension language for SQL and the Oracle

relational database. Following are notable facts about PL/SQL:

 PL/SQL is a completely portable, high-performance transaction-processing

language.

 PL/SQL provides a built-in interpreted and OS independent programming

environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to

database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming

language.

 Apart from Oracle, PL/SQL is available in TimesTen in-memory database and

IBM DB2.

Features of PL/SQL

PL/SQL has the following features:

 PL/SQL is tightly integrated with SQL.

 It offers extensive error checking.

 It offers numerous data types.

 It offers a variety of programming structures.

 It supports structured programming through functions and procedures.

 It supports object-oriented programming.

 It supports developing web applications and server pages.

www.a2zpapers.com

www.a2zpapers.com

Advantages of PL/SQL

PL/SQL has the following advantages:

 SQL is the standard database language and PL/SQL is strongly integrated with

SQL. PL/SQL supports both static and dynamic SQL. Static SQL supports DML

operations and transaction control from PL/SQL block. Dynamic SQL is SQL

allows embedding DDL statements in PL/SQL blocks.

 PL/SQL allows sending an entire block of statements to the database at one

time. This reduces network traffic and provides high performance for the

applications.

 PL/SQL gives high productivity to programmers as it can query, transform, and

update data in a database.

 PL/SQL saves time on design and debugging by strong features, such as

exception handling, encapsulation, data hiding, and object-oriented data types.

 Applications written in PL/SQL are fully portable.

 PL/SQL provides high security level.

 PL/SQL provides access to predefined SQL packages.

 PL/SQL provides support for Object-Oriented Programming.

 PL/SQL provides support for Developing Web Applications and Server Pages.

www.a2zpapers.com

www.a2zpapers.com

PL/SQL - Basic Syntax

S.N. Sections & Description

1
Declarations

This section starts with the keyword DECLARE. It is an optional section

and defines all variables, cursors, subprograms, and other elements to be

used in the program.

2
Executable Commands

This section is enclosed between the keywords BEGIN and END and it is a

mandatory section. It consists of the executable PL/SQL statements of the

program. It should have at least one executable line of code, which may

be just a NULL command to indicate that nothing should be executed.

3
Exception Handling

This section starts with the keyword EXCEPTION. This section is again

optional and contains exception(s) that handle errors in the program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be

nested within other PL/SQL blocks using BEGIN and END. Here is the basic

structure of a PL/SQL block:

DECLARE

<declarations section>

BEGIN

<executable command(s)>

www.a2zpapers.com

www.a2zpapers.com

EXCEPTION

<exception handling>

END;

The 'Hello World' Example:

DECLARE

message varchar2(20):='Hello, World!';

BEGIN

dbms_output.put_line(message);

END;

/

The end; line signals the end of the PL/SQL block. To run the code from

SQL command line, you may need to type / at the beginning of the first

blank line after the last line of the code. When the above code is executed

at SQL prompt, it produces the following result:

HelloWorld

PL/SQL procedure successfully completed.

The PL/SQL Delimiters

A delimiter is a symbol with a special meaning. Following is the list of

delimiters in PL/SQL:

Delimiter Description

+, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

' Character string delimiter

www.a2zpapers.com

www.a2zpapers.com

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

" Quoted identifier delimiter

= Relational operator

@ Remote access indicator

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

<<, >> Label delimiter (begin and end)

/*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

www.a2zpapers.com

www.a2zpapers.com

.. Range operator

<, >, <=, >= Relational operators

<>, '=, ~=, ^= Different versions of NOT EQUAL

PL/SQL Program Units

A PL/SQL unit is any one of the following:

 PL/SQL block

 Function

 Package

 Package body

 Procedure

 Trigger

 Type

 Type body

PL/SQL – Variables

A variable is nothing but a name given to a storage area that our programs

can manipulate. Each variable in PL/SQL has a specific data type, which

determines the size and layout of the variable's memory; the range of

values that can be stored within that memory and the set of operations that

can be applied to the variable.

www.a2zpapers.com

www.a2zpapers.com

The name of a PL/SQL variable consists of a letter optionally followed by

more letters, numerals, dollar signs, underscores, and number signs and

should not exceed 30 characters. By default, variable names are not case-

sensitive. You cannot use a reserved PL/SQL keyword as a variable name.

Variable Declaration in PL/SQL

PL/SQL variables must be declared in the declaration section or in a

package as a global variable. When you declare a variable, PL/SQL allocates

memory for the variable's value and the storage location is identified by the

variable name.

The syntax for declaring a variable is:

variable_name[CONSTANT]datatype[NOT NULL][:=| DEFAULT initial_value]

Where, variable_name is a valid identifier in PL/SQL, datatype must be a

valid PL/SQL data type or any user defined data type which we already have

discussed in last chapter. Some valid variable declarations along with their

definition are shown below:

sales number(10,2);

pi CONSTANT double precision :=3.1415;

name varchar2(25);

address varchar2(100);

PL/SQL - Operators

An operator is a symbol that tells the compiler to perform specific

mathematical or logical manipulation. PL/SQL language is rich in built-in

operators and provides the following types of operators:

 Arithmetic operators

 Relational operators

www.a2zpapers.com

www.a2zpapers.com

 Comparison operators

 Logical operators

 String operators

Declaring a Constant

A constant is declared using the CONSTANT keyword. It requires an initial

value and does not allow that value to be changed. For example:

PI CONSTANT NUMBER :=3.141592654;

DECLARE

--constant declaration

pi constant number :=3.141592654;

--other declarations

radius number(5,2);

dia number(5,2);

circumference number(7,2);

area number (10,2);

BEGIN

-- processing

radius:=9.5;

dia:= radius *2;

circumference:=2.0* pi * radius;

area:= pi * radius * radius;

--output

dbms_output.put_line('Radius: '|| radius);

dbms_output.put_line('Diameter: '||dia);

dbms_output.put_line('Circumference: '|| circumference);

dbms_output.put_line('Area: '|| area);

END;

/

www.a2zpapers.com

www.a2zpapers.com

When the above code is executed at SQL prompt, it produces the following

result:

Radius:9.5

Diameter:19

Circumference:59.69

Area:283.53

Pl/SQL procedure successfully completed.

PL/SQL – Conditions

Decision-making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to be

false.

Statement Description

www.a2zpapers.com

www.a2zpapers.com

IF - THEN statement

The IF statement associates a condition with a

sequence of statements enclosed by the
keywordsTHEN and END IF. If the condition is
true, the statements get executed and if the

condition is false or NULL then the IF statement
does nothing.

IF-THEN-ELSE statement

IF statement adds the keyword ELSE followed by
an alternative sequence of statement. If the
condition is false or NULL , then only the

alternative sequence of statements get executed.
It ensures that either of the sequence of
statements is executed.

IF-THEN-ELSIF statement

It allows you to choose between several
alternatives.

Case statement

Like the IF statement, the CASE
statement selects one sequence of statements to

execute.
However, to select the sequence, the CASE
statement uses a selector rather than multiple

Boolean expressions. A selector is an expression
whose value is used to select one of several
alternatives.

Searched CASE statement

The searched CASE statement has no selector,
and it's WHEN clauses contain search conditions

that yield Boolean values.

nested IF-THEN-ELSE

You can use one IF-THEN or IF-THEN-

ELSIFstatement inside another IF-THEN or IF-
THEN-ELSIF statement(s).

PL/SQL - Loops

There may be a situation when you need to execute a block of code several

number of times. In general, statements are executed sequentially: The

first statement in a function is executed first, followed by the second, and

so on.

Programming languages provide various control structures that allow for

more complicated execution paths.

www.a2zpapers.com

www.a2zpapers.com

http://www.tutorialspoint.com/plsql/plsql_if_then.htm
http://www.tutorialspoint.com/plsql/plsql_if_then_else.htm
http://www.tutorialspoint.com/plsql/plsql_if_then_elsif.htm
http://www.tutorialspoint.com/plsql/plsql_case_statement.htm
http://www.tutorialspoint.com/plsql/plsql_searched_case.htm
http://www.tutorialspoint.com/plsql/plsql_nested_if.htm

A loop statement allows us to execute a statement or group of statements

multiple times and following is the general form of a loop statement in most

of the programming languages:

Loop Type Description

PL/SQL Basic LOOP

In this loop structure, sequence of statements is

enclosed between the LOOP and END LOOP
statements. At each iteration, the sequence of
statements is executed and then control resumes at

the top of the loop.

PL/SQL WHILE LOOP

Repeats a statement or group of statements while a

given condition is true. It tests the condition before
executing the loop body.

PL/SQL FOR LOOP

Execute a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

Nested loops in PL/SQL

You can use one or more loop inside any another
basic loop, while or for loop.

www.a2zpapers.com

www.a2zpapers.com

http://www.tutorialspoint.com/plsql/plsql_basic_loop.htm
http://www.tutorialspoint.com/plsql/plsql_while_loop.htm
http://www.tutorialspoint.com/plsql/plsql_for_loop.htm
http://www.tutorialspoint.com/plsql/plsql_nested_loops.htm

PL/SQL – Procedures
A subprogram is a program unit/module that performs a particular task. These

subprograms are combined to form larger programs. This is basically called the

'Modular design'. A subprogram can be invoked by another subprogram or

program which is called the calling program.

A subprogram created inside a package is a packaged subprogram. It is

stored in the database and can be deleted only when the package is deleted

with the DROP PACKAGE statement. We will discuss packages in the chapter

'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a

set of parameters. PL/SQL provides two kinds of subprograms:

 Functions: these subprograms return a single value, mainly used to compute

and return a value.

 Procedures: these subprograms do not return a value directly, mainly used to

perform an action.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE

statement. The simplified syntax for the CREATE OR REPLACE PROCEDURE

statement is as follows:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name[IN | OUT | IN OUT] type [,...])]

{IS | AS}

BEGIN

<procedure_body>

ENDprocedure_name;

www.a2zpapers.com

www.a2zpapers.com

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows modifying an existing procedure.

 The optional parameter list contains name, mode and types of the parameters.

IN represents that value will be passed from outside and OUT represents that

this parameter will be used to return a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone

procedure.

Example:
The following example creates a simple procedure that displays the string

'Hello World!' on the screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

dbms_output.put_line('Hello World!');

END;

/

When above code is executed using SQL prompt, it will produce the

following result:

Procedure created.

Creating a Function
A standalone function is created using the CREATE FUNCTION statement.

The simplified syntax for the CREATE OR REPLACE PROCEDURE statement is

as follows:

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name[IN | OUT | IN OUT] type [,...])]

www.a2zpapers.com

www.a2zpapers.com

RETURN return_datatype

{IS | AS}

BEGIN

<function_body>

END[function_name];

Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows modifying an existing function.

 The optional parameter list contains name, mode and types of the parameters.

IN represents that value will be passed from outside and OUT represents that

this parameter will be used to return a value outside of the procedure.

 The function must contain a return statement.

 RETURN clause specifies that data type you are going to return from the

function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone

function.

Example:
The following example illustrates creating and calling a standalone function.

This function returns the total number of CUSTOMERS in the customers

table. We will use the CUSTOMERS table, which we had created in PL/SQL

Variableschapter:

Select*from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

|1|Ramesh|32|Ahmedabad|2000.00|

www.a2zpapers.com

www.a2zpapers.com

http://www.tutorialspoint.com/plsql/plsql_variable_types.htm
http://www.tutorialspoint.com/plsql/plsql_variable_types.htm
http://www.tutorialspoint.com/plsql/plsql_variable_types.htm

|2|Khilan|25|Delhi|1500.00|

|3|kaushik|23|Kota|2000.00|

|4|Chaitali|25|Mumbai|6500.00|

|5|Hardik|27|Bhopal|8500.00|

|6|Komal|22| MP |4500.00|

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

total number(2):=0;

BEGIN

 SELECT count(*)into total

 FROM customers;

 RETURN total;

END;

/

When above code is executed using SQL prompt, it will produce the

following result:

Function created.

While creating a function, you give a definition of what the function has to do.

To use a function, you will have to call that function to perform the defined task.

When a program calls a function, program control is transferred to the called

function.

A called function performs defined task and when its return statement is

executed or when it last end statement is reached, it returns program control

back to the main program.

DECLARE

c number(2);

BEGIN

c:=totalCustomers();

dbms_output.put_line('Total no. of Customers: '|| c);

www.a2zpapers.com

www.a2zpapers.com

END;

/

When the above code is executed at SQL prompt, it produces the following

result:

Totalno. of Customers:6

PL/SQL procedure successfully completed.

Example:
The following is one more example which demonstrates Declaring, Defining,

and Invoking a Simple PL/SQL Function that computes and returns the

maximum of two values.

DECLARE

a number;

b number;

c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

z number;

BEGIN

 IF x > y THEN

z:= x;

 ELSE

 Z:= y;

END IF;

 RETURN z;

END;

BEGIN

a:=23;

b:=45;

www.a2zpapers.com

www.a2zpapers.com

c:=findMax(a, b);

dbms_output.put_line(' Maximum of (23,45): '|| c);

END;

/

When the above code is executed at SQL prompt, it produces the following

result:

Maximum of (23,45):45

PL/SQL procedure successfully completed.

PL/SQL - Cursors

Oracle creates a memory area, known as context area, for processing an

SQL statement, which contains all information needed for processing the

statement, for example, number of rows processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area

through a cursor. A cursor holds the rows (one or more) returned by a SQL

statement. The set of rows the cursor holds is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch

and process the rows returned by the SQL statement, one at a time. There

are two types of cursors:

 Implicit cursors

 Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL

statement is executed, when there is no explicit cursor for the statement.

Programmers cannot control the implicit cursors and the information in it.

www.a2zpapers.com

www.a2zpapers.com

Attribute Description

%FOUND Returns TRUE if an INSERT, UPDATE, or DELETE statement

affected one or more rows or a SELECT INTO statement
returned one or more rows. Otherwise, it returns FALSE.

%NOTFOUND The logical opposite of %FOUND. It returns TRUE if an
INSERT, UPDATE, or DELETE statement affected no rows, or
a SELECT INTO statement returned no rows. Otherwise, it

returns FALSE.

%ISOPEN Always returns FALSE for implicit cursors, because Oracle
closes the SQL cursor automatically after executing its

associated SQL statement.

%ROWCOUNT Returns the number of rows affected by an INSERT, UPDATE,

or DELETE statement, or returned by a SELECT INTO
statement.

Example:
We will be using the CUSTOMERS table we had created and used in the

previous chapters.

Select*from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

|1|Ramesh|32|Ahmedabad|2000.00|

|2|Khilan|25|Delhi|1500.00|

|3|kaushik|23|Kota|2000.00|

|4|Chaitali|25|Mumbai|6500.00|

|5|Hardik|27|Bhopal|8500.00|

www.a2zpapers.com

www.a2zpapers.com

|6|Komal|22| MP |4500.00|

+----+----------+-----+-----------+----------+

The following program would update the table and increase salary of each

customer by 500 and use the SQL%ROWCOUNT attribute to determine the

number of rows affected:

DECLARE

total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary +500;

 IF sql%notfound THEN

dbms_output.put_line('no customers selected');

 ELSIF sql%found THEN

total_rows:=sql%rowcount;

dbms_output.put_line(total_rows||' customers selected ');

END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following

result:

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have

been updated:

Select*from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

www.a2zpapers.com

www.a2zpapers.com

|1|Ramesh|32|Ahmedabad|2500.00|

|2|Khilan|25|Delhi|2000.00|

|3|kaushik|23|Kota|2500.00|

|4|Chaitali|25|Mumbai|7000.00|

|5|Hardik|27|Bhopal|9000.00|

|6|Komal|22| MP |5000.00|

Explicit Cursors

Explicit cursors are programmer defined cursors for gaining more control

over the context area. An explicit cursor should be defined in the

declaration section of the PL/SQL Block. It is created on a SELECT

Statement which returns more than one row.

The syntax for creating an explicit cursor is :

CURSOR cursor_name IS select_statement;

Working with an explicit cursor involves four steps:

 Declaring the cursor for initializing in the memory

 Opening the cursor for allocating memory

 Fetching the cursor for retrieving data

 Closing the cursor to release allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated

SELECT statement. For example:

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor

www.a2zpapers.com

www.a2zpapers.com

Opening the cursor allocates memory for the cursor and makes it ready for

fetching the rows returned by the SQL statement into it. For example, we

will open above-defined cursor as follows:

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example we

will fetch rows from the above-opened cursor as follows:

FETCH c_customers INTO c_id,c_name,c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we

will close above-opened cursor as follows:

CLOSE c_customers;

Example:

Following is a complete example to illustrate the concepts of explicit

cursors:

DECLARE

c_idcustomers.id%type;

c_namecustomers.name%type;

c_addrcustomers.address%type;

 CURSOR c_customersis

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customersintoc_id,c_name,c_addr;

 EXIT WHEN c_customers%notfound;

dbms_output.put_line(c_id||' '||c_name||' '||c_addr);

END LOOP;

 CLOSE c_customers;

www.a2zpapers.com

www.a2zpapers.com

END;

/

When the above code is executed at SQL prompt, it produces the following

result:

1RameshAhmedabad

2KhilanDelhi

3kaushikKota

4ChaitaliMumbai

5HardikBhopal

6Komal MP

PL/SQL procedure successfully completed.

subprogram

A subprogram is a program unit/module that performs a particular task.

These subprograms are combined to form larger programs. This is basically

called the 'Modular design'. A subprogram can be invoked by another

subprogram or program which is called the calling program.

A subprogram can be created:

 At schema level

 Inside a package

 Inside a PL/SQL block

A schema level subprogram is a standalone subprogram. It is created

with the CREATE PROCEDURE or CREATE FUNCTION statement. It is stored

in the database and can be deleted with the DROP PROCEDURE or DROP

FUNCTION statement.

www.a2zpapers.com

www.a2zpapers.com

A subprogram created inside a package is a packaged subprogram. It is

stored in the database and can be deleted only when the package is deleted

with the DROP PACKAGE statement. We will discuss packages in the chapter

'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a

set of parameters. PL/SQL provides two kinds of subprograms:

 Functions: these subprograms return a single value, mainly used to compute

and return a value.

 Procedures: these subprograms do not return a value directly, mainly used to

perform an action.

Procedures

A procedure is a group of PL/SQL statements that you can call by name. A call

specification (sometimes called call spec) declares a Java method or a third-generation

language (3GL) routine so that it can be called from SQL and PL/SQL. The call spec

tells Oracle Database which Java method to invoke when a call is made.

Stored Procedures

What is a Stored Procedure?

A stored procedure or in simple a proc is a named PL/SQL block which

performs one or more specific task. This is similar to a procedure in other

programming languages.

A procedure has a header and a body. The header consists of the name of

the procedure and the parameters or variables passed to the procedure. The

body consists or declaration section, execution section and exception section

similar to a general PL/SQL Block.

A procedure is similar to an anonymous PL/SQL Block but it is named for

repeated usage.

www.a2zpapers.com

www.a2zpapers.com

Procedures: Passing Parameters

We can pass parameters to procedures in three ways.

1) IN-parameters

2) OUT-parameters

3) IN OUT-parameters

 Functions

A PL/SQL function is same as a procedure except that it returns a value.

Therefore, all the discussions of the previous chapter are true for functions

too.

Creating a Function
A standalone function is created using the CREATE FUNCTION statement.

The simplified syntax for the CREATE OR REPLACE PROCEDURE statement is

as follows:

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name[IN | OUT | IN OUT] type [,...])]

RETURN return_datatype

{IS | AS}

BEGIN

<function_body>

END[function_name];

Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows modifying an existing function.

www.a2zpapers.com

www.a2zpapers.com

 The optional parameter list contains name, mode and types of the parameters.

IN represents that value will be passed from outside and OUT represents that

this parameter will be used to return a value outside of the procedure.

 The function must contain a return statement.

 RETURN clause specifies that data type you are going to return from the

function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone

function.

Example:
The following example illustrates creating and calling a standalone function.

This function returns the total number of CUSTOMERS in the customers

table. We will use the CUSTOMERS table, which we had created in PL/SQL

Variableschapter:

Select*from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

|1|Ramesh|32|Ahmedabad|2000.00|

|2|Khilan|25|Delhi|1500.00|

|3|kaushik|23|Kota|2000.00|

|4|Chaitali|25|Mumbai|6500.00|

|5|Hardik|27|Bhopal|8500.00|

|6|Komal|22| MP |4500.00|

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

total number(2):=0;

www.a2zpapers.com

www.a2zpapers.com

http://www.tutorialspoint.com/plsql/plsql_variable_types.htm
http://www.tutorialspoint.com/plsql/plsql_variable_types.htm
http://www.tutorialspoint.com/plsql/plsql_variable_types.htm

BEGIN

 SELECT count(*)into total

 FROM customers;

 RETURN total;

END;

/

When above code is executed using SQL prompt, it will produce the

following result:

Function created.

Calling a Function
While creating a function, you give a definition of what the function has to

do. To use a function, you will have to call that function to perform the

defined task. When a program calls a function, program control is

transferred to the called function.

A called function performs defined task and when its return statement is

executed or when it last end statement is reached, it returns program

control back to the main program.

To call a function you simply need to pass the required parameters along

with function name and if function returns a value then you can store

returned value. Following program calls the function totalCustomers from

an anonymous block:

DECLARE

c number(2);

BEGIN

c:=totalCustomers();

dbms_output.put_line('Total no. of Customers: '|| c);

END;

/

www.a2zpapers.com

www.a2zpapers.com

When the above code is executed at SQL prompt, it produces the following

result:

Totalno. of Customers:6

PL/SQL procedure successfully completed.

Example:
The following is one more example which demonstrates Declaring, Defining,

and Invoking a Simple PL/SQL Function that computes and returns the

maximum of two values.

DECLARE

a number;

b number;

c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

z number;

BEGIN

 IF x > y THEN

z:= x;

 ELSE

 Z:= y;

END IF;

 RETURN z;

END;

BEGIN

a:=23;

b:=45;

c:=findMax(a, b);

www.a2zpapers.com

www.a2zpapers.com

dbms_output.put_line(' Maximum of (23,45): '|| c);

END;

/

Packages

L/SQL packages are schema objects that groups logically related PL/SQL

types, variables and subprograms.

A package will have two mandatory parts:

 Package specification

 Package body or definition

Package Specification

The specification is the interface to the package. It just DECLARES the

types, variables, constants, exceptions, cursors, and subprograms that can

be referenced from outside the package. In other words, it contains all

information about the content of the package, but excludes the code for the

subprograms.

All objects placed in the specification are called public objects. Any

subprogram not in the package specification but coded in the package body

is called aprivate object.

www.a2zpapers.com

www.a2zpapers.com

The following code snippet shows a package specification having a single

procedure. You can have many global variables defined and multiple

procedures or functions inside a package.

CREATE PACKAGE cust_sal AS

 PROCEDURE find_sal(c_idcustomers.id%type);

ENDcust_sal;

/

When the above code is executed at SQL prompt, it produces the following

result:

Package created.

Package Body

The package body has the codes for various methods declared in the

package specification and other private declarations, which are hidden from

code outside the package.

The CREATE PACKAGE BODY Statement is used for creating the package

body. The following code snippet shows the package body declaration for

the cust_salpackage created above. I assumed that we already have

CUSTOMERS table created in our database as mentioned in PL/SQL -

Variables chapter.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_idcustomers.id%TYPE) IS

c_salcustomers.salary%TYPE;

BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id =c_id;

www.a2zpapers.com

www.a2zpapers.com

http://www.tutorialspoint.com/plsql/plsql_variable_types.htm
http://www.tutorialspoint.com/plsql/plsql_variable_types.htm

dbms_output.put_line('Salary: '||c_sal);

ENDfind_sal;

ENDcust_sal;

/

When the above code is executed at SQL prompt, it produces the following

result:

Package body created.

VIEW

An Oracle VIEW, in essence, is a virtual table that does not physically exist. Rather, it is

created by a query joining one or more tables.

Create VIEW

Syntax

The syntax for the CREATE VIEW Statement in Oracle/PLSQL is:

CREATE VIEW view_name AS

 SELECT columns

 FROM tables

 [WHERE conditions];

view_name

The name of the Oracle VIEW that you wish to create.

WHERE conditions

Optional. The conditions that must be met for the records to be included in the VIEW.

Example

Here is an example of how to use the Oracle CREATE VIEW:

www.a2zpapers.com

www.a2zpapers.com

CREATE VIEW sup_orders AS

 SELECT suppliers.supplier_id, orders.quantity, orders.price

 FROM suppliers

 INNER JOIN orders

 ON suppliers.supplier_id = orders.supplier_id

 WHERE suppliers.supplier_name = 'Microsoft';

This Oracle CREATE VIEW example would create a virtual table based on the result set

of the SELECT statement. You can now query the Oracle VIEW as follows:

SELECT *

FROM sup_orders;

Update VIEW

You can modify the definition of an Oracle VIEW without dropping it by using the Oracle

CREATE OR REPLACE VIEW Statement.

Syntax

The syntax for the CREATE OR REPLACE VIEW Statement in Oracle/PLSQL is:

CREATE OR REPLACE VIEW view_name AS

 SELECT columns

 FROM table

 WHERE conditions;

view_name

The name of the Oracle VIEW that you wish to create or replace.

Example

Here is an example of how you would use the Oracle CREATE OR REPLACE VIEW

Statement:

CREATE or REPLACE VIEW sup_orders AS

www.a2zpapers.com

www.a2zpapers.com

 SELECT suppliers.supplier_id, orders.quantity, orders.price

 FROM suppliers

 INNER JOIN orders

 ON suppliers.supplier_id = orders.supplier_id

 WHERE suppliers.supplier_name = 'Apple';

This Oracle CREATE OR REPLACE VIEW example would update the definition of the

Oracle VIEW called sup_orders without dropping it. If the Oracle VIEW did not yet exist,

the VIEW would merely be created for the first time.

Drop VIEW

Once an Oracle VIEW has been created, you can drop it with the Oracle DROP VIEW

Statement.

Syntax

The syntax for the DROP VIEW Statement in Oracle/PLSQL is:

DROP VIEW view_name;

view_name

The name of the view that you wish to drop.

Example

Here is an example of how to use the Oracle DROP VIEW Statement:

DROP VIEW sup_orders;

This Oracle DROP VIEW example would drop/delete the Oracle VIEW

called sup_orders.

www.a2zpapers.com

www.a2zpapers.com

Triggers

Triggers are stored programs, which are automatically executed or fired

when some events occur. Triggers are, in fact, written to be executed in

response to any of the following events:

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with

which the event is associated.

Benefits of Triggers
Triggers can be written for the following purposes:

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Creating Triggers
The syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR]| UPDATE [OR]| DELETE}

[OF col_name]

www.a2zpapers.com

www.a2zpapers.com

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

www.a2zpapers.com

www.a2zpapers.com

